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1 Introduction

Non-relativistic quantum systems with two-body bound state energies tuned close to

threshold seem to describe a variety of physical problems (see [1] for a review). This

tuning may be accidental, as it is in the effective theories that describe the few-body

strong interactions of nucleons at low momentum transfers, or arranged by experimental

manipulation, as with cold atoms placed in an external confining trap [2]. As the binding

energy approaches threshold, the scattering length diverges and the precise nature of the

two-body interactions becomes irrelevant. In this limit, the dynamics can be formulated in

terms of local non-relativistic scale invariant field theories (NRCFTs), in which the usual

Galilean invariance of the interactions is enhanced to a non-relativistic conformal symmetry

known as Schrodinger symmetry.1

Because the scattering length diverges, the NRCFTs relevant to nature are strongly

coupled and thus cannot be treated by the usual perturbative techniques. While it has been

possible to obtain analytical results in the few-body sector (for a review of methods see [2,

10]), the many-body properties of these theories have not yielded to analytical methods.

Instead one must turn to numerical simulations in order to account for phenomena observed

in the laboratory.

1Schrodinger invariant quantum field theories were first discussed in refs. [3, 4]. In d = 4 spacetime

dimensions, an important example for both nuclear and atomic physics is the theory of fermions at unitarity,

consisting of spin−1/2 particles interacting through a short range potential. This theory was shown to satisfy

the Ward identities of the Schrodinger group in [5], and the renormalization group scaling of theories close

to this fixed point was first described in [6]. For lower dimensional examples see ref. [7]. Formal aspects of

Schrodinger invariant field theories are discussed in [8, 9]
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In the case of strongly coupled, relativistic (super) conformal field theories, it has

been possible in some cases to use the AdS/CFT correspondence [11–13] to recast the

dynamics in terms of a dual gravitational theory that, in a suitable limit, becomes weakly

coupled. It is therefore natural to ask if a similar mapping can be obtained for strongly

coupled non-relativistic conformal theories. Such a gravitational description is likely to

yield robust results only when both sides of the duality have enough supersymmetry, so

it is perhaps not directly applicable to NRCFTs that can be realized in the laboratory.

Nevertheless, establishing a weakly coupled dual gravitational description may still be

useful. For example, it might shed light on aspects of the dynamics that are universal and

thus independent of any underlying supersymmetry.

A first step towards establishing the correspondence between NRCFTd (with d−1 the

number of spatial dimensions) and (d+2)-dimensional gravity theory was taken recently by

Son [14] and by Balasubramanian and McGreevy [15]. In these papers, the usual AdS/CFT

dictionary [12, 13] is adapted to derive NRCFT correlators from a gravitational theory

propagating in a background with isometry group Sch(d−1), the d-dimensional Schrodinger

group. In order to generate this background, it is necessary include an energy-momentum

term in the Einstein equations that breaks the maximal symmetry of the vacuum down to

Sch(d−1). The resulting metric in [14, 15] describes a static cosmological model driven by

a pressureless fluid, and by applying the rules of AdS/CFT to bulk fields in this geometry,

it is possible to reproduce the boundary correlators of Schrodinger invariant theories.

Here we propose instead a version of the correspondence in which the gravity side lives

in a (locally) AdSd+2 background. The breaking of the full SO(2, d+ 1) isometry group is

achieved by imposing boundary conditions on AdS bulk fields that only preserve Sch(d−1).

As in [14, 15], our prescription yields Schrodinger invariant field theory correlators on

the boundary.

There may be some advantages to formulating the gravity/NRCFT correspondence

directly in AdS, without introducing additional non-vacuum energy-momentum (i.e., be-

sides a pure cosmological constant) to break the full conformal symmetry. For instance,

it may be simpler to describe properties of NRCFT whose dual gravity description de-

pend on the global structure of the spacetime (e.g. the state-operator map [13, 16], phase

transitions [17]). Some of these global properties will be discussed below. In addition,

AdS backgrounds emerge naturally in supergravity. One may speculate that this raises the

possibility of constructing explicit supersymmetric examples of AdS/NRCFT by taking

the non-relativistic limit, along the lines discussed below, of standard AdS/CFT duality

(supersymmetric extensions of the Schrodinger algebra have been studied in [18]).

In section 3.1 we set up the basic dictionary between NRCFT correlators and AdS

bulk physics in the Poincare patch. We use the embedding of Sch(d− 1) into SO(2, d+ 1)

discussed in [19, 21, 22] (see also [14]) to identify modes of AdSd+2 bulk fields of definite non-

zero momentum along a compactified lightlike direction with boundary NRCFT primary

operators. This yields a prescription for computing boundary correlators similar to that

in [14, 15]. In section 3.2 we discuss global aspects of the correspondence. In particular, we

develop the gravitational description of global Hamiltonian time evolution, and use it to

reproduce the state-operator correspondence of NRCFTs established in [9] (see also ref. [23]
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for a generalization). We also use the global description to recover the bound ∆ ≥ (d−1)/2

of scaling dimensions in unitary NRCFTs. By considering asymptotically-AdS black holes,

it is possible to extend the methods discussed here to the case of finite temperature/density

NRCFTs.

2 Non-relativistic CFTs

A non-relativistic CFT is defined as field theory in d−1 spatial dimensions that is invariant

under the symmetry group Sch(d− 1). In this section we review the necessary facts about

Sch(d − 1) symmetry and its relation to the conformal group SO(2, d + 1) that will be

needed in the construction of AdS duals later on.

2.1 Schrodinger invariance

The relation between NRCFTs in d− 1 spatial dimension and AdSd+2 spacetime is closely

connected to the relation between the Galilean conformal symmetry of (d− 1)-dimensional

space, Sch(d− 1) and the conformal group SO(2, d+ 1) of (d+ 1)-dimensional Minkowski

space. This connection is well known [19–22], and it is perhaps best illustrated in the

context of a simple example [24, 25]. Consider a massless free scalar propagating in d+ 1-

dimensional Minkowski space,

S =
1

2

∫

dd+1x∂µφ∂
µφ. (2.1)

This is trivially invariant under the conformal group SO(2, d+ 1). Choose lightlike coordi-

nates (t, ξ) in Minkowski space, with

t =
x0 + xd

√
2

,

ξ =
x0 − xd

√
2

. (2.2)

The metric takes the form (with the notation ~x · ~y = xiyi, i = 1, . . . , d− 1),

ds2 = −2dtdξ + d~x · d~x. (2.3)

Concentrating on a single mode of φ with definite momentum in the ξ direction, φ =

e−iξmψ(t, ~x), the action reduces to a free non-relativistic field theory (after renormaliz-

ing ψ),

S →
∫

dtd~xψ†(t, ~x)

(

i∂t +
1

2m
∇2

)

ψ(t, ~x), (2.4)

which is invariant under the group of non-relativistic conformal transformations, generated

by the usual Galilean generators (H,P i,Ki = boosts,M ij = rotations), together with a

dilatation D, a Galilean special conformal generator C, and a central charge N correspond-

ing to the total particle number. For example, under dilatations, D : (t, ~x) → (λ2t, λ~x) for

some λ. The complete algebra is given below in eqs. (2.10)–(2.12).
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This example shows that Sch(d − 1), the symmetry group of a free non-relativistic

field theory (or more generally of a non-relativistic CFT), can be viewed as the subgroup

of SO(2, d+1) that does not mix modes with different momentumN along the null direction

ξ. In other words, it is the subgroup of SO(2, d+1) that leaves a fixed lightlike momentum

vector invariant [19].

In this paper, we will take this as the definition of Sch(d−1). Let the invariant lightlike

vector be

N =
P 0 − P d

2
. (2.5)

Then the Sch(d−1) algebra consists of SO(2, d+1) generators that commute with N . The

algebra of the conformal group is spanned by the Poincare generators (Pµ,Mµν) along

with dilatations D̃ and special conformal transformations Kµ. It is given by

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ), [Mµν ,Kρ] = −i(ηµρKν − ηνρKµ),

[Mµν ,Mρσ] = −iηµρMνσ + perms., (2.6)

[D̃,Mµν ] = 0 [D̃,Kµ] = iKµ

[D̃, Pµ] = −iPµ, (2.7)

[Pµ,Kν ] = 2iMµν − 2iηµνD̃. (2.8)

The subalgebra that commutes with N consists of the generators

H =
1

2
(P 0 + P d), C = 1

2
(K0 −Kd), D = M0d + D̃, (2.9)

as well as spatial translations P i, boosts Ki = M0i−Mdi, and spatial rotations M ij . These

generators satisfy the (extended) Sch(d − 1) algebra. whose non-zero commutators are

[Mij , Pk] = −i(δikPj − δjkPi), [Mij ,Kk] = −i(δikKj − δjkKi),

[Mij ,Mrs] = −iδirMjs + perms., (2.10)

[D,P i] = −iP i, [D,Ki] = iKi, [C,P i] = iKi, (2.11)

[D,H] = −2iH, [D,C] = 2iC, [H,C] = iD. (2.12)

and

[P i,Kj ] = −iNδij (2.13)

Note in particular that the generators H,C,D form an SL(2,R) subalgebra. The eigen-

states of the operator N can be interpreted as states of definite particle number.

2.2 State-operator correspondence

In relativistic CFTs, there is a one-to-one map between local operators O(x) with defi-

nite scaling dimension ∆ and the eigenstates of the conformal Hamiltonian H = (P 0 +

K0)/2 [26]. Roughly speaking, given an operator O(x), the state |O〉 = limx→0 O(x)|0〉 is

an energy eigenstate, H|O〉 = ∆|O〉.
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Nishida and Son [9] established an analog of the state-operator correspondence for

NRCFTs, which we now review. Let |0〉 be the vacuum state of H and O(t, ~x) an NRCFT

primary operator, which by definition satisfies

[Ki,O(0)] = 0, [C,O(0)] = 0, [D,O(0)] = −i∆O(0). (2.14)

Then it follows from the Sch(d− 1) algebra that the state

|O〉 = e−H/ωO†(0)|0〉, (2.15)

is an eigenstate of the deformed Hamiltonian Ho = H + ω2C, where ω is a constant with

units of frequency,

Ho|O〉 = ω∆|O〉. (2.16)

The deformed Hamiltonian has a useful physical interpretation, which can be exhibited

by noting that in a NRCFT, the special conformal generator C can be realized in terms of

the fundamental fields ψ(t, ~x) as the operator

C =
1

2

∫

d~x ψ(t, ~x)†~x2ψ(t, ~x). (2.17)

Thus the deformed Hamiltonian Ho corresponds to placing the original NRCFT, with

internal Hamiltonian H, in a harmonic external potential (setting to unity the mass of the

particle excitations associated with the field operator ψ(t, ~x)). The state-operator map is

therefore the statement that the eigenstates of the NRCFT in the harmonic trap are in

one-to-one correspondence with the primary operators of the conformal theory, where the

energy eigenvalues are the scaling dimensions.2 The SL(2,R) subalgebra of Sch(d − 1)

implies that above each state |O〉, with O primary, there is a tower of Ho eigenstates

with level spacing 2ω. Different states in this tower are connected by the raising/lowering

operators

ωL± = H − ω2C ∓ iωD, (2.18)

which satisfy the commutation relations [Ho, L±] = ±2ωL± as a consequence of the

Sch(d − 1) algebra. In addition, the descendant operators Oi1···iℓ(0) = ∂i1 · · · ∂iℓO(0) −
traces generate SL(2,R) towers above a base state with energy ∆ + ℓ in units of ω.

The relation between time evolution generated by Ho and the presence of a harmonic

potential has a geometric interpretation, as pointed out in [25, 27]. Following that reference,

introduce the following coordinates on (d+ 1)-dimensional flat space:

ωto = tan−1 ωt,

ξo = ξ − 1

2
ω~x2 ωt

1 + ω2t2
,

~xo =
~x√

1 + ω2t2
. (2.19)

2In addition to the correspondence between eigenstates of Ho and the operator algebra in the free-space

theory introduced in [9], there is an additional correspondence between Ho eigenstates and zero-energy

homogeneous N-particle eigenfunctions of H [28]. As shown in ref. [23], these, and many other such

mappings, are related by inner automorphisms of the SL(2, R) subalgebra of the Schrodinger group.
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These new coordinates have simple transformation properties under the action of Ho,

Ho : (to, ξo, ~xo) → (to + τ, ξo, ~xo) (2.20)

for some constant τ . In these coordinates, the metric eq. (2.3) becomes ds2 =

cos2 ωtods
2
o, with

ds2o = −ω2~x2
odt

2
o − 2dtodξo + d~x2

o. (2.21)

By covariantizing eq. (2.1), and adding a term proportional to
∫

dd+1x
√
gRφ2 with a suit-

ably chosen coefficient, the theory becomes invariant under arbitrary conformal trans-

formations of ds2 → Ω2ds2 of the background metric. Making a transformation that

converts eq. (2.3) to the metric in eq. (2.21), and plugging in the momentum eigenmode

φ = e−imξoψ(to, ~xo) into the conformally invariant free Lagrangian, one obtains (dropping

the subscript o)

S →
∫

dtd~xψ†(t, ~x)

(

i∂t +
1

2m
∇2 − 1

2
mω2~x2

)

ψ(t, ~x), (2.22)

which is the free NRCFT coupled to an external harmonic potential.

3 AdS/CFT for non-relativistic field theories

In this section we establish the correspondence between NRCFTd and gravity in AdSd+2.

In order to generate a background with the requisite symmetry, one must break the full

SO(2, d + 1) isometry group of AdS down to a Sch(d − 1) subgroup. This can be accom-

plished by selecting a preferred lightlike direction in AdS generated by the orbits of the

particle number operator N in the algebra of Sch(d− 1) ⊂ SO(2, d + 1). The discreteness

of the spectrum of N suggests that the preferred lightlike direction should be compact.

The Lagrangian form of the correspondence, suitable for computing correlation func-

tions is developed in below in section 3.1. The procedure is the standard AdS/CFT pre-

scription for Green’s functions [12, 13] (also employed in the approach of [14, 15]), with a

modification of the asymptotic behavior of bulk fields near the AdS boundary to account

for the symmetry breaking SO(2, d+ 1) → Sch(d− 1). In section 3.2 we discuss the global

Hamiltonian formulation. There we show how the NRCFT analog of radial quantization

(i.e., the state-operator map of ref. [9]) emerges in the AdS picture.

3.1 Poincare coordinates: correlation functions

Consider a local NRCFT primary operator OM (i.e., satisfying eq. (2.14)) with particle

number M and scaling dimension ∆,

[N,OM ] = −iMON , [D,OM (0)] = −i∆OM (0). (3.1)

The generating function of OM (t, ~x) correlators is

ZNRCFT [φ] =

〈

T exp

[

i

∫

dtd~x φ(t, ~x)OM (t, ~x) + h.c.

]〉

. (3.2)
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where the expectation value is taken in the vacuum of the generator H. We would like

to establish a dictionary between correlation functions in the NRCFTd and quantities

in AdSd+2.

To set up the correspondence, it is convenient to use coordinate on AdSd+2 that point

along the orbits of the generators H, corresponding to time evolution in the NRCFT (in

the absence of external fields), and particle number N . Because both these operators are

linear combinations of translations Pµ, we work in the Poincare coordinates X = (z, xµ)

on AdS which transform as Pµ : (xµ, z) → (xµ + aµ, z). The metric in these coordinates is

ds2 =
ℓ2

z2

(

−2dtdξ + d~x · d~x+ dz2
)

(3.3)

with ℓ the AdS radius. The null coordinates (t, ξ) are given in terms of Poincare coordinates

by eq. (2.2), and simply shift under the action of H,N :

H : (t, ξ) → (t+ ∆t, ξ), N : (t, ξ) → (t, ξ + ∆ξ). (3.4)

Because particle number N = i∂ξ is discrete, we assume that the null direction parame-

terized by ξ is compactified on a circle. This is achieved by identifying ξ ∼ ξ + λ for some

constant λ. There is no invariant definition of radius for lightlike compactification, and

indeed the compactification scale does not enter any of our results. Note that the metric

on the boundary, z → 0, becomes the flat metric eq. (2.3) up to an overall (divergent)

factor.

The correspondence for correlation functions follows from the usual AdS/CFT dictio-

nary between operators O and AdS bulk fields,

ZNRCFT [φ] = ZAdS [φ]. (3.5)

Here the right hand term is the effective action for a bulk field φ(X) in AdSd+2 subject to

the following asymptotics on the AdS boundary at z → 0,

φ(X) → z∆e−iMξφ(t, ~x). (3.6)

Assuming that the semiclassical approximation holds, one can replace lnZAdS [φ] ≃ iSc[φ],

where Sc[φ] is the classical gravity action in AdS.

To illustrates how this works, consider a free massive scalar field φ propagating in

AdSd+2. In the above coordinates the action is,

S = −
∫

dd+2X
√
g

[

z2ηµν∂µφ
†∂νφ+ z2|∂zφ|2 +m2|φ|2

]

. (3.7)

We set out to find a solution of the equation of motion with the boundary asymptotics

eq. (3.6). This must be of the form

φ(X) = e−iMξφM (t, ~x, z). (3.8)

The equation of motion becomes

− ∂2
zφM +

d

z
∂zφM − (2iM∂t + ∇2)φM +

m2

z2
φM = 0. (3.9)

– 7 –
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Note that near the boundary, the solutions behave as φM ∼ z∆± , with

∆± =
d+ 1

2
±

√

(

d+ 1

2

)2

+m2, (3.10)

which is the standard AdS/CFT relation between bulk mass and scaling dimension ∆.

A similar relation between NRCFT scaling dimensions and bulk quantities was given in

refs. [14, 15]. However, in our case the quantity ∆± which governs the asymptotic behavior

of the scalar field is independent of the eigenvalue M of momentum in the ξ direction.3

Barring this discrepancy in the definition of m2 appearing in eq. (3.10), the wave

equation eq. (3.9) for an eigenstate of ξ momentum is identical to the corresponding field

equations in [14, 15]. This must be the case given that their background metric has

Sch(d−1) symmetry by construction. In terms of Fourier modes along the (t, ~x) directions,

the solutions are as in, e.g. [14],

φM ∼ z
d+1
2 Kν(Qz), (3.12)

with ν = ±
√

(d+ 1)2/4 +m2, and Q = (~p2 − 2Mω)1/2.

Given the z → 0 asymptotics of the Bessel function Kν(z), the boundary behavior is

indeed φ ∼ z∆± . As discussed in [29], there is an ambiguity in the choice of root ∆± for

some values of the mass parameter m. For m2 > 1−(d+1)2/4, finiteness of the (Euclidean)

action fixes the choice ∆+, while for

−
(

d+ 1

2

)2

< m2 < 1 −
(

d+ 1

2

)2

, (3.13)

both ∆+ and ∆− are permissible. The interpretation is that for each choice of root ∆, the

same AdS theory gives rise to a different boundary CFT [29]. This interpretation carries

over to NRCFTs, as discussed in [14]. Note in particular that the smallest possible operator

dimension is ∆ = (d − 1)/2, the dimension of a free non-relativistic field. We will give a

more careful derivation of this bound, along the lines of [30], in section 3.2 below from the

point of view of Hamiltonian evolution.

Correlation functions of the primary operator OM dual to φ can now be constructed

using eq. (3.5) and eq. (3.12). The calculation (see [14, 15]) is standard given the solutions

eq. (3.12) and will not be repeated here. For example, the two-point function, up to some

normalization constant c, is given by

〈TOM (t, ~x)O†
M (0, 0)〉 = cθ(t)t−∆ exp

(

iM
~x2

2t

)

, (3.14)

3It is possible to modify eq. (3.10) to include dependence on the momentum eigenvalue M . This would

arise, e.g., from couplings to dynamical fields that get expectation values in the ξ direction. Such VEVs

would shift the Lagrangian by the additional terms,

Sξ = −
Z

dd+2X
√

g
h

c1φ
†i∂ξφ + c2|∂ξφ|2 + · · ·

i

, (3.11)

which have the effect of replacing m2 → m2 + c1M + c2M
2 + · · · in eq. (3.10).
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where ∆ is one of the roots in eq. (3.10). This is consistent with the results of [8, 9] for

the form of the two-point correlator of a primary operator OM in an NRCFT. Comparing

eq. (3.14) with the propagator of a free particle of mass M in d− 1 space dimensions

〈~x|e−iHt|~x = 0〉 =

(

M

2πi

)
d−1
2

θ(t)t−
(d−1)

2 exp

(

iM
~x2

2t

)

, (3.15)

suggests that that the M -particle bound state interpolated by O†
M can be interpreted

as a free particle of mass M moving in a fractional 2∆-dimensional space.4 Connected

correlators with more operator insertions encode scattering amplitudes. These amplitudes

are parameterized by the various coupling constants (e.g, gravitational couplings) in the

AdS bulk and thus scale roughly like powers of GN ℓ
−d, with GN the (d + 2)-dimensional

Newton constant. If the AdS radius ℓ is large in Planck units, these correlation functions

can be computed from the usual AdS/CFT bulk-to-boundary diagrams, with boundary

conditions as in eq. (3.6) for each operator insertion.

3.2 State-operator correspondence

In relativistic CFTd+1s, time evolution generated by the conformal Hamiltonian H, whose

eigenstates are the primary operators |O〉, is equivalent to canonical quantization on the

space R × Sd [26]. The scale introduced by the radius of the sphere Sd has the effect

of generating a finite gap in the spectrum of CFT scaling dimensions. R × Sd is also

the global boundary of AdSd+2, where R is spanned by AdS global time τ . Given the

correspondence between CFT operators and AdS bulk fields, this implies a map between

AdS field eigenmodes of H = i∂τ and the states |O〉 of the boundary CFT [13, 16]. The

spectrum of i∂τ is quantized due to the presence of a gravitational potential well for modes

in AdS, and therefore matches the discreteness of the CFT spectrum on R × Sd.

In this section, we discuss the AdS interpretation of analogous global aspects of NR-

CFTs. In particular, we develop the correspondence between the state-operator map in-

troduced in [9] and the eigenmodes of bulk fields with respect to a suitably chosen global

time variable. From this analysis, we also recover the unitarity bound ∆ ≥ (d − 1)/2 on

NRCFTd scaling dimensions. The consistency of these results with those of section 3.1

(e.g., the relation eq. (3.10) between scaling dimensions and AdS field masses) provides a

check of the AdS/NRCFT dictionary.

3.2.1 Coordinates

We need to introduce a time coordinate on AdSd+2 that points along orbits of the oscillator

Hamiltonian Ho = H + ω2C discussed in section 2.2. A suitable set of coordinates can be

obtained by starting with the definition of AdSd+2 as the quadric surface

− ℓ2 = −2X+X− − 2Z+Z− +XiXi (i = 1, . . . , d− 1) (3.16)

4Accordingly, the result in eq. (2.16) can be viewed as the ground state energy of a 2∆-dimensional

harmonic oscillator.
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embedded in Rd+3 with metric

ds2 = −2dX+dX− − 2dZ+dZ− + dXidXi. (3.17)

We parameterize a given point in AdS in terms of coordinates (t, ξ) generated by the orbits

of Ho and N respectively and a set of spatial coordinates. A given point in AdSd+2 can be

written as (0 ≤ ωt < 2π, −∞ < ξ <∞, x± > 0)















Xi

ωZ−

X+

Z+

ωX−















= e−itHoe−iξN















xi

0

x+

0

ωx−















, (3.18)

where xi, x± satisfy the constraint (seting ℓ = 1 from now on),

x+x− =
1

2
(1 + r2), (3.19)

(r2 = xixi). Using the definition of Ho and N in terms of SO(2, d + 1) generators, we get

Xi = xi,

ωZ− = −x+ sinωt− ξωx− cosωt,

X+ = x+ cosωt− ξωx− sinωt,

Z+ = −ωx− sinωt,

ωX− = ωx− cosωt, (3.20)

for the relation between the embedding coordinates and the coordinates (t, ξ, x±, xi)

adapted to the NRCFT. The coordinates (t, ξ, x±, xi) with the above ranges cover the

AdS hyperboloid once. In order to remove closed timelike curves, we unwrap the time

coordinate t by letting it go over −∞ < t < ∞. As in section 3.1, the discreteness of

the spectrum of N suggests that the direction along the coordinate ξ be compact. This

is achieved by identifying points ξ ∼ ξ + λ, for some constant λ. The ambient metric

eq. (3.17) in these coordinates is

ds2 = −2ω2x−(x−dξ + x+dt)dt− 2dx+dx− + dxidxi, (3.21)

and the AdS metric is the induced metric on points that satisfy the constraint eq. (3.19).

On surfaces of constant (t, ξ), the metric is ds2 = −2dx+dx− + dxidxi, and thus the

coordinates (x±, xi) subject to eq. (3.19) span a copy of d-dimensional hyperbolic space

Hd. Eqs. (3.18), (3.21) describe a locally AdS spacetime with global topology S1
ξ ×Rd+1.

To study the boundary (where the NRCFT lives), recall that in AdS this consists of the

re-scaled points (X±, Z±,Xi) → s(X±, Z±,Xi), s → ∞ of the quadric eq. (3.16). These

points satisfy

0 = 2X+X− + 2Z+Z− +XiXi, (3.22)
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with the identification (X±, Z±,Xi) ∼ s(X±, Z±,Xi) under (now finite) scaling. On the

coordinates (t, ξ, x±, xi), this re-scaling gives

(t, ξ, x±, xi) → (t, ξ, sx±, sxi). (3.23)

Thus the boundary consists of points spanned by (t, ξ) as well as (x±, xi), with the equiv-

alence (x±, xi) ∼ s(x±, xi) under re-scalings, and subject to the constraint

2x+x− = r2. (3.24)

The set of points satisfying the relation consists of an Sd−1, which is the boundary at

infinity of hyperbolic space Hd as described by eq. (3.19). Thus the boundary of the

spacetime defined by eq. (3.18) is conformal to the space Rt × S1
ξ × Sd−1.

For example, using the equivalence under scaling, one can set, e.g., x− = 1/2, and thus

x+ = r2 by eq. (3.24). The metric on the boundary becomes (up to an overall factor of

s2 → ∞)

ds2bd = −ω2r2dt2 − 1

2
ω2dtdξ + dxidxi. (3.25)

Up to normalization of ξ, this is exactly the metric in eq. (2.21). From the discussion

in section 2.2, this indicates that the boundary NRCFT lives in a background harmonic

confining trap. Because eq. (2.21) is conformally flat, this result is consistent with the

boundary conformal structure of AdS. Alternatively, we can choose to set x+ = 1/2 on the

boundary by rescaling. In that case, x− = r2 and the boundary metric becomes

ds2bd = −ω2r2dt2 − 2ω2r4dξdt+ dxidxi. (3.26)

This metric is conformally equivalent to the metric in the patch x− = 1/2, as can be seen

by performing an inversion xi → xi/2r2 and pulling out a factor of r4. The full boundary

is the union of the two patches x± = 1/2.

As it stands x± are not independent variables. A convenient set of of coordinates on

the surface eq. (3.19) is xi together with z = x+/x−. In terms of xµ = (t, ξ, z, xi) the

metric is now,

ds2 = −ω2(1 + r2)

(

dt2 +
dtdξ

z

)

+
1

4
(1 + r2)

dz2

z2
+

dr2

1 + r2
+ r2dΩ2

d−2, (3.27)

with 0 < z < ∞. The boundary of the spacetime can be reached by taking r → ∞. To

put the resulting metric in the form of the oscillator metric eq. (2.21), one has to re-define

z = ρ2 and make the conformal re-scaling ds2 → ρ2ds2. Hypersurfaces Σt of constant t

are lightlike, with normal vector k = ∂ξ. The generators of Σt are the null geodesics with

tangent vector k, one passing through every fixed value of (z, xi).

3.2.2 Energy eigenstates

Having constructed the global time coordinate t, we can now check that the spectrum of

Ho in the NRCFT matches the energy spectrum of i∂t acting on AdS fields. For simplicity,
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we consider the energy eigenmodes of a free massive scalar field φ in AdSd+2. The Klein-

Gordon equation in the coordinates xµ = (t, ξ, z, xi) is

[

4

1+r2

(

− z

ω2
∂ξ∂t+

z2

ω2
∂2

ξ +z2∂2
z

)

+
1

rd−2(1+r2)
∂r(1+r2)2rd−2∂r+

1

r2
∇2

d−2 −m2

]

φ = 0,

(3.28)

plus possible terms from eq. (3.11). We will also need the norm for states quantized relative

to (lightlike) hypersurfaces Σt of constant t ,

〈φ1|φ2〉 =
i

2

∫

Σt

dΣµ φ†1
↔

∂µ φ2 =
i

2

∫

Σt

dξ
dz

2z
rd−2dr dΩd−2 φ

†
1

↔

∂ξ φ2. (3.29)

In the second equality, we have used the definition dΣµ = kµ
√
hdd+1x, with h the deter-

minant of the metric on a d-dimensional surface with t, ξ = constant and kµ = δµ
ξ is the

normal vector to Σt (this is the definition of kµ, dΣµ used in formulating Stokes’ theorem

for integrals over regions bounded by null surfaces). The inner product is t-independent as

long as the flux of the current Jµ = iφ†1
↔

∂ µ φ2 through the boundary at r → ∞ vanishes,

F = rd+2Jr

∣

∣

∣

r→∞
→ 0. (3.30)

Plugging in the ansatz

φ = e−iEte−iMξZ(z)R(r)Yℓ(Ω), (3.31)

with Yℓ(Ω) a spherical harmonic on Sd−2, eq. (3.28) factorizes into

1

rd−2(1 + r2)

d

dr
(1 + r2)2rd−2 d

dr
R+

(

L2

r2
+m2 − λ

1 + r2

)

R = 0, (3.32)

and
d2Z

dz2
+

(

−M
2

ω2
+
ME

ω2z
− λ

4z2

)

Z = 0. (3.33)

The effect of terms such as in eq. (3.11) is to shift the bulk mass m by some polynomial

in M . Here λ is a constant yet to be determined, and L2 = ℓ(ℓ + d − 3) is minus the

eigenvalue of ∇2
d−2 acting on Yℓ(Ω). The solution of eq. (3.32) that is regular at r = 0 is

the hypergeometric function

R(r) = rℓ(1 + r2)−∆/2−ℓ/2
2F1

(

a, b; c;
r2

1 + r2

)

, (3.34)

with

a =
1

2
(ℓ+ ∆ − 1) +

1

2

√
1 + λ,

b =
1

2
(ℓ+ ∆ − 1) − 1

2

√
1 + λ,

c = ℓ+
d− 1

2
. (3.35)
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The parameter ∆ is given by one of the roots in eq. (3.10). For eq. (3.33), the solution

that is regular at z → 0 can be written in terms of the confluent hypergeometric function

Z(z) = zµ+1/2e−ωz/4M
1F1

(

µ− ν +
1

2
; 2µ+ 1;

ωz

2M

)

(3.36)

with µ = 1

2

√
1 + λ, ν = E/2ω.

Near the boundary of spacetime, the radial function has the behavior

R(r → ∞) ∼ Γ(a+ b− c)Γ(c)

Γ(b)Γ(a)
r∆−d−1 +

Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
r−∆. (3.37)

Normalizability with respect to eq. (3.29) is only possible if −b is a non-negative integer, in

which case the term that scales like r∆−d−1 vanishes. The remaining term has finite norm

as long as

∆ ≥ d− 1

2
, (3.38)

and thus we recover the unitarity bound on NRCFT scaling dimensions from the grav-

ity description.5 This choice of parameters also implies that the flux eq. (3.30) of the

Klein-Gordon current vanishes at the boundary, ensuring that time evolution along Σt hy-

persurfaces is unitary. In addition, finiteness of the z integral in eq. (3.29) requires that

µ − ν + 1/2 in eq. (3.36) must be a negative integer or zero. We can now eliminate λ to

obtain a relation between E and ∆,

E

2ω
=

1

2
(∆ + ℓ− 1) + n, (n = 0, 1, 2, · · · ). (3.39)

Up to a zero-point constant, this result reproduces all the features of the NR state-

operator correspondence developed in [9]. A primary operator O(0) of the boundary NR-

CFT is dual to the ℓ = 0 mode of the field φ and corresponds to the lowest level in an

SL(2,R) ladder of oscillator states with spacing ∆E = 2ω. Higher multipoles of φ corre-

spond to the states Oi1···iℓ = ∂i1 · · · ∂iℓO(0)− traces, of scaling dimension ∆+ ℓ. Eq. (3.39)

confirms that the duality between NRCFT operators and AdS bulk fields proposed in

section 3.1 correctly reproduces the global aspects of Schrodinger invariant field theory.

4 Conclusion

In this paper we have formulated a correspondence between (semiclassical) gravity in d+2

dimensions and non-relativistic conformal field theory in d− 1 spatial dimensions. In this

approach, the Sch(d − 1) symmetry of the NRCFT manifests itself on the gravity side as

the residual symmetry of AdS that remains after projecting onto eigenmodes along a fixed

null direction. It becomes possible to set up the correspondence directly in (locally) AdS

5The bound ∆ ≥ d−1
2

on scalar NRCFT primary operators can be obtained from the highest weight

representation theory of the SL(2, R) subrgroup of the Schrodinger algebra discussed in section 2.2. It

arises by demanding positivity of norm to the “level-2” subspace generated by states L+|O〉, (P + iK)|O〉
of dimension ∆ + 2.
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spacetimes, avoiding the need to introduce non-vacuum sources of energy-momentum (i.e.,

sources in addition to cosmological constant).

Here we have set up the basic dictionary (similar to the usual AdS/CFT dictionary) and

tested the consistency of the approach by showing that it reproduces certain properties of

NRCFTs that can be derived from symmetry considerations alone (the form of two-point

correlators and the state-operator correspondence). There are several theoretical issues

that must still be addressed. First, in our proposal (and also in the proposal of [14, 15])

for constructing Schrodinger invariant spacetimes, it seems necessary to compactify the

null coordinate ξ dual to the orbits of the particle number generator N . However, lightlike

compactifications are problematic both in field theory and gravity. See [31] for a discussion.

Second, the boundary limit of the spacetime geometry considered in this paper does not

satisfy the criteria discussed in ref. [32] that are necessary for causality in the boundary

theory. However, if one takes the point of view that the gravity duals considered in this

paper should be regarded as phenomenological models of strongly interacting approximate

NRCFTs (in the spirit of “AdS/QCD” models of strong interaction physics), then the

necessity of satisfying boundary causality seems not to be crucial. Indeed, in the theory

of fermions near unitarity that originally motivated this paper, the Lagrangian contains

non-local short range interactions, and causality requirements such as those of ref. [32] do

not strictly hold.

Although we have only explicitly considered a toy gravity theory containing a single

dynamical scalar, it is straightforward to extend our analysis to more complicated gravity

models. In particular, to reproduce the operator spectrum of realistic NRCFTs it necessary

to include additional fields, for example: the bulk graviton hµν (related to the various

components of Tµν in the boundary theory), a Kaluza-Klein gauge field resulting from

lightlike compactification (dual to the particle number current operator), bulk gauge fields

related to the global symmetries of the boundary CFT.

It remains to be seen whether the AdS/NRCFT proposal presented here can be used

to make predictions for the dynamics of strongly coupled NRCFTs probed in the lab-

oratory. As a first step in that direction, it is necessary to establish a version of the

correspondence for NRCFTs at finite temperature and density. It seems clear that this

can be done by studying gravity duals propagating in asymptotically AdS (charged) black

hole backgrounds, compactified on a suitable chosen lightlike direction in order to generate

the appropriate non-relativistic symmetries. In that case it should be possible to apply

the existing AdS/CFT technology for e.g., computing finite temperature/density response

functions and hydrodynamic transport properties [33–36].
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